Produkt zum Begriff Kathete:
-
ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.
Preis: 51.05 € | Versand*: 4.99 € -
WESTCOTT Geometrie-Dreieck 14,0 cm
Überzeugt auf ganzer Linie: das WESTCOTT Geometrie-Dreieck Ob Winkel messen oder akkurate Linien zeichnen – das Geometrie-Dreieck der Marke WESTCOTT unterstützt Sie tatkräftig bei all Ihren Zeichnungen in Schule, Studium und Beruf. Dabei verfügt die transparent/gelbe Oberfläche über alles, was Sie für Ihre Zeichnungen benötigen, und macht die Handhabung besonders einfach. Hervorragende Eigenschaften Dank der farblich hinterlegten Gradskala können Sie die Winkel auf dem Geometrie-Dreieck immer exakt abmessen. Zudem verfügt das Geometrie-Dreieck über Tuschenoppen, die ein Verwischen der Linien verhindern und Ihnen die Linealführung erleichtern. Und damit Sie Ihr Zeichenwerkzeug auch lange Zeit nutzen können, besteht das Geometrie-Dreieck aus widerstandsfähigem Kunststoff. Statten Sie sich für Ihre Zeichnungen ideal aus und bestellen Sie das Geometrie-Dreieck der Marke WESTCOTT gleich hier im Online-Shop!
Preis: 2.72 € | Versand*: 4.99 € -
WESTCOTT Geometrie-Dreieck 25,0 cm
Immer im richtigen Winkel – mit dem WESTCOTT Geodreieck Mit diesem Geodreieck messen Sie Winkel auf den Grad genau und zeichnen stets akkurate Linien. Besonders hilfreich: Die Winkelgrade sind farbig hinterlegt. Für die einfache Handhabung ist das Geometrie-Dreieck mit einem abnehmbaren Griff versehen. Hervorragende Produkteigenschaften Damit Sie Ihr Zeichenwerkzeug lange Zeit verwenden können, besteht es aus widerstandsfähigem, bruchfestem Kunststoff . Statten Sie sich für häufiges Messen und Zeichnen mit einem hochwertigen Geodreieck von WESTCOTT aus und bestellen Sie dieses bequem und einfach hier im Online-Shop!
Preis: 2.49 € | Versand*: 4.99 € -
herlitz Geometrie-Dreieck 16,0 cm
Das Geometrie-Dreieck überzeugt auf ganzer Linie Ob Winkel messen oder akkurate Linien zeichnen – das Geometrie-Dreieck der Marke herlitz unterstützt Sie tatkräftig bei Ihren anfallenden, maßgenauen Zeichnungen. Dabei verfügt die transparent/gelbe Oberfläche über alles, was Sie für Ihre Zeichnungen benötigen. So werden Sie bei der Nutzung nichts vermissen und restlos begeistert sein. Immer im richtigen Winkel Dank der grün hinterlegten Gradskala ist ein exaktes Ablesen der Winkel kein Problem. Das Geometrie-Dreieck verfügt zudem über nützliche Tuschennoppen, die ein verwischen der Linien verhindern und Ihnen die Linealführung erleichtern. Für Messungen dient außerdem das 10-mm-Raster. Die gegenläufige Grad-Skala dieses Zeichengeräts ist für ein besseres Ablesen farbig markiert. Und damit Sie Ihr Zeichenwerkzeug auch lange Zeit nutzen können, besteht das Geometrie-Dreieck aus widerstandsfähigem Kunststoff. Mit diesem Geometrie-Dreieck gelingt Ihnen jede Abbildung. Zögern Sie deshalb nicht und bestellen Sie das Geometrie-Dreieck der Marke herlitz gleich hier im Online-Shop!
Preis: 1.11 € | Versand*: 4.99 €
-
Was ist eine Kathete in einem Dreieck?
Eine Kathete ist eine der beiden Seiten eines rechtwinkligen Dreiecks, die den rechten Winkel einschließen. Sie verbindet den rechten Winkel mit einem der anderen beiden Eckpunkte des Dreiecks. Die Kathete, die den rechten Winkel mit dem Eckpunkt verbindet, von dem aus die Höhe des Dreiecks gemessen wird, wird auch als Höhenkathete bezeichnet.
-
Wie viele Ecken, Kanten und Flächen hat ein Dreieck, Viereck, Fünfeck, Sechseck, Siebenschläfer, Achteck, Neuneck und Zehneck?
Ein Dreieck hat 3 Ecken, 3 Kanten und 1 Fläche. Ein Viereck hat 4 Ecken, 4 Kanten und 1 Fläche. Ein Fünfeck hat 5 Ecken, 5 Kanten und 1 Fläche. Ein Sechseck hat 6 Ecken, 6 Kanten und 1 Fläche. Ein Siebenschläfer ist kein geometrisches Objekt, daher hat es keine Ecken, Kanten oder Flächen. Ein Achteck hat 8 Ecken, 8 Kanten und 1 Fläche. Ein Neuneck hat 9 Ecken, 9 Kanten und 1 Fläche. Ein Zehneck hat 10 Ecken, 10 Kanten und 1 Fläche.
-
Wie berechne ich die Kathete bei einem gleichschenkligen Dreieck?
Bei einem gleichschenkligen Dreieck sind die beiden Katheten gleich lang. Um die Länge der Kathete zu berechnen, kannst du entweder die Länge der Hypotenuse und den Winkel zwischen Hypotenuse und Kathete kennen oder du kennst die Länge der anderen Kathete und den Winkel zwischen den beiden Katheten. Mit Hilfe des Sinus, Kosinus oder Tangens kannst du dann die Länge der Kathete berechnen.
-
Wie kann die Länge der Kathete eines rechtwinkligen Dreiecks berechnet werden, wenn die Länge der Hypotenuse und des anderen Kathete gegeben sind? Welche Anwendungen hat die Kathete in der Geometrie und in anderen Bereichen wie der Architektur oder der Ingenieurwissenschaft? Wie kann die Kathete in der Trigonometrie verwendet werden, um Winkel oder Seitenlängen in einem Dreieck zu bere
Die Länge der Kathete eines rechtwinkligen Dreiecks kann mithilfe des Satzes des Pythagoras berechnet werden, indem man die Länge der Hypotenuse und des anderen Kathete verwendet. Der Satz des Pythagoras besagt, dass die Quadratsumme der beiden Katheten gleich dem Quadrat der Hypotenuse ist, also a^2 + b^2 = c^2, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. In der Geometrie wird die Kathete verwendet, um die Seitenlängen und Winkel rechtwinkliger Dreiecke zu berechnen. In der Architektur und Ingenieurwissenschaft wird die Kathete verwendet, um die Längen von Gebäuden, Brücken und anderen Strukturen zu berechnen und zu konstruieren. In der Trigonometrie
Ähnliche Suchbegriffe für Kathete:
-
RUMOLD Geometrie-Dreieck 32,5 cm
Professioneller Gesamteindruck Das RUMOLD Geometrie-Dreieck unterstützt Sie tatkräftig bei Ihren täglich anfallenden Zeichnungen. Auf der transparenten Oberfläche finden Sie alles vor, was Sie für einen reibungslosen professionellen Entwurf benötigen. Neben Markierungen für Zentimeter und Millimeter befinden sich z. B. auch eine farbig hinterlegte, gegenläufige Gradskala für Winkel bis zu 180° darauf. Mit dem Geometrie-Dreieck haben Sie alles im Griff Am Geometrie-Dreieck befindet sich ein Griff, der Ihnen bei schwierigen Zeichen-Manövern zur Hand geht. Er sorgt dafür, dass das Geometrie-Dreieck an Ort und Stelle bleibt und nicht verrutscht. So können Sie einfach und schnell präzise Linien und exakte Winkel erstellen. Und sollte Sie der Griff stören, dann können Sie ihn ganz einfach abnehmen. Mehr als nur ein Nullpunkt Am Nullpunkt des Geometrie-Dreieckes befindet sich noch ein Einstechpunkt, der zur Anbringung eines Zirkels dient. Neben exakten Linien können Sie dann auch kreisförmige Figuren im Handumdrehen erstellen. Sie wollen gleich mit dem Zeichnen beginnen? Dann bestellen Sie das RUMOLD Geometrie-Dreieck noch heute in unserem Online-Shop.
Preis: 7.95 € | Versand*: 4.99 € -
ARISTO Geometrie-Dreieck 32,5 cm
Geometrie-Dreieck mit Griff für Schule, Studium und Büro Mit dem 32,5 langen Zeichendreieck von ARISTO zeichnen Sie schnell und exakt Grade, Winkel, Lote, Senkrechte, Parallelen, Schraffuren, rechtwinkelige oder polare Koordinaten. Das Geometrie-Dreieck vereint Maßstab, Winkelmesser, Symmetrie-Maßstab, Zeichendreieck und Parallel-Lineal in einem Gerät. Klare Strichführung Die Facette an der Millimeter-Skalierung ermöglicht Ihnen eine klare Strichzeichnung. Die Tuschenoppen an der Unterseite bilden einen kleinen Abstand zum Untergrund. Dies verhindert ein Verwischen der Linien und erleichtert Ihnen außerdem die Linealführung. Am Haltegriff führen Sie mühelos und schnell das ARISTO Geometrie-Dreieck. Das glasklare, maßbeständige Plexiglas® gibt dabei den Blick auf Ihre Unterlagen frei. Orientieren sie sich leicht an den farbig hinterlegten Winkelgeraden und der abriebfesten Tiefenprägung. Setzen Sie auf Spitzenqualität und bestellen Sie das maßbeständige ARISTO Geometrie-Dreieck gleich hier in unserem Online Shop.
Preis: 11.64 € | Versand*: 4.99 € -
DONAU Geometrie-Dreieck 16,0 cm
Hier geht nichts schief Mit dem Geometrie-Dreieck 16,0 cm von DONAU haben Sie den rechten Winkel immer im Blick. Zeichnen Sie kinderleicht akkurate Linien und messen Sie den Winkel auf den Grad genau. Mit dem DONAU Geometrie-Dreieck kein Problem. Es liegt gut in der Hand und erleichtert Ihnen das Zeichnen ungemein. Alles im Blick Die gegenläufigen Grad-Zahlen werden auf dem Geometrie-Dreieck mittels farblicher Hinterlegung optisch hervorgehoben. Die Skalierungen und Zahlen sind gut lesbar und sorgen für perfekte Linien und Winkel. Alles im Griff Damit das Geometrie-Dreieck nicht wegrutscht, befindet sich in der Mitte ein praktischer Griff, der Ihnen den nötigen Halt gibt. Bestellen Sie das Geometrie-Dreieck 16,0 cm von DONAU noch heute in unserem Online-Shop und überzeugen Sie sich von der einfachen Handhabung.
Preis: 0.60 € | Versand*: 4.99 € -
DONAU Geometrie-Dreieck 25,0 cm
Hier geht nichts schief Mit dem Geometrie-Dreieck 25,0 cm von DONAU haben Sie den rechten Winkel immer im Blick. Zeichnen Sie kinderleicht akkurate Linien und messen Sie den Winkel auf den Grad genau. Mit dem DONAU Geometrie-Dreieck kein Problem. Es liegt gut in der Hand und erleichtert Ihnen das Zeichnen ungemein. Alles im Blick Die gegenläufigen Grad-Zahlen werden auf dem Geometrie-Dreieck mittels farblicher Hinterlegung optisch hervorgehoben. Die Skalierungen und Zahlen sind gut lesbar und sorgen für perfekte Linien und Winkel. Alles im Griff Damit das Geometrie-Dreieck nicht wegrutscht, befindet sich in der Mitte ein praktischer Griff, der Ihnen den nötigen Halt gibt. Bestellen Sie das Geometrie-Dreieck 25,0 cm von DONAU noch heute in unserem Online-Shop und überzeugen Sie sich von der einfachen Handhabung.
Preis: 1.92 € | Versand*: 4.99 €
-
Was ist die Definition einer Kathete in der Geometrie und wie verhält sie sich in einem rechtwinkligen Dreieck?
Eine Kathete ist eine der beiden Seiten eines rechtwinkligen Dreiecks, die den rechten Winkel einschließt. Sie steht senkrecht auf der Hypotenuse und bildet zusammen mit dieser den rechten Winkel. In einem rechtwinkligen Dreieck sind die Katheten die Seiten, die direkt an den rechten Winkel angrenzen.
-
Was ist die mathematische Definition einer Kathete in einem rechtwinkligen Dreieck?
Eine Kathete in einem rechtwinkligen Dreieck ist eine der beiden Seiten, die den rechten Winkel einschließen. Sie stehen senkrecht zueinander und sind nicht die Hypotenuse. Die Katheten werden oft mit a und b bezeichnet.
-
Wie berechnet man die Länge der einen Kathete, wenn der Umfang und die Länge der anderen Kathete in einem rechtwinkligen Dreieck gegeben sind?
Um die Länge der einen Kathete in einem rechtwinkligen Dreieck zu berechnen, wenn der Umfang und die Länge der anderen Kathete gegeben sind, kann man den Satz des Pythagoras verwenden. Der Satz besagt, dass die Summe der Quadrate der beiden Katheten gleich dem Quadrat der Hypotenuse ist. Durch Umstellen der Formel kann man dann die Länge der gesuchten Kathete berechnen.
-
Wie kann die Länge der Kathete in einem rechtwinkligen Dreieck berechnet werden, wenn die Länge der Hypotenuse und des anderen Kathete bekannt sind?
Um die Länge der Kathete in einem rechtwinkligen Dreieck zu berechnen, kann der Satz des Pythagoras verwendet werden. Dieser besagt, dass die Summe der Quadrate der beiden Katheten gleich dem Quadrat der Hypotenuse ist. Daher kann die Länge der gesuchten Kathete durch Umstellen der Formel berechnet werden. Die Formel lautet: a^2 = c^2 - b^2, wobei a die gesuchte Kathete, c die Hypotenuse und b die bekannte Kathete ist. Durch Umstellen der Formel nach a ergibt sich a = √(c^2 - b^2). Damit kann die Länge der gesuchten Kathete berechnet werden.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.